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1 Basic Inequalities

Theorem 1.1 (Markov’s Inequality). Consider a non-negative random vari-
able X. For every positive t, we have
E[X
Pr{X >t} < [t]
Theorem 1.2 (Chebyshev’s Inequality). Consider an arbitrary random
variable X with a finite expectation p = E[X] and finite variance Var[X| =
E[(X — u)?]. For every positive t, we have

PeX — i > 1 < V22X

Exercise: Prove Markov’s and Chebyshev’s inequalities.

Theorem 1.3 (Jensen’s Inequality). For every convex function f: R — R
and random variable X, we have

E[f(X)] > f(E[X]).
For every concave function g : R — R and random variable X, we have
E[g(X)] < g(E[X]).

Theorem 1.4 (The Cauchy-Schwarz Inequality). For all random variables
X and Y, the following inequality holds:

E[XY] < /E[X? E[Y?].



2 Bounds on Binomial Coefficients
Claim 2.1. For all natural n and k < n, we have
(1) =(1)< (%)
k/ — \k k
Proof. We first show the lower bound. Write
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Observe that all terms (n —1i)/(k — i) are lower bounded by n/k. Thus,
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Now we establish the upper bound. We have

(Z>_ nt ne(n=De(n—k+1) _ k
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To finish the proof, we need to show that k! > (k/e)* (compare this in-
equality with Stirling’s approximation for k!). Write the Taylor series for
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We have e¥ > k¥ /k! and, consequently, k! > (k/e)*. O

3 Hoeffding’s Inequality

Theorem 3.1 (Hoeffding’s Inequality). Let X1,..., X, bei.i.d.! Rademacher
random variables taking values 1 and —1 with probability 1/2 i.e.,

Pr{X; =1} =Pr{X; = -1} = 1/a.
Then, for all t > 0, we have
t2
Pr{ZXi > t} < e .

'i.i.d. stands for independent identically distributed




Proof. We first show the following lemma.

Lemma 3.2 (Bernstein). Let X,..., X, be independent random variables.
For all A >0 and t > 0, we have

H‘ E [ e)\XZ‘ ]
P32 o) < LB
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Proof of Lemma 3.2. Let f(z) = € and S = Y, X;. Observe that f is
a monotonically increasing non-negative function. Thus, x > t if and only
if f(z) > f(t). In particular, S > ¢ if and only if f(S) > f(¢). Thus, by
Markov’s inequality applied to the random variable f(.5), we have

Pr{S =1} =Pr{f(5) = f(t)} <
Write,
E[f(S)] = E[ exp ()\ZXZ-)] E E[Hexp (X))
Random variables exp ()\Xi) (1 € {1,...,n}) are independent, hence

E[Hexp (Ax)] = HE[exp (X))

Thus,
ILE [exp ()\Xi)}
f(t) '
This concludes the proof. O

Pr{S >t} <

We now use Lemma 3.2 to prove Hoeffding’s inequality. To this end, we
compute the expectation E[exp(AX;)] for each i:

et -+ e~

E[exp ()\Xi)] = Pr{X; =1} + Pr{X; = —1} . e = =

The function on the right hand side is called the hyperbolic cosine and
denoted by coshx: coshz = (e* 4+ e *)/2. We use the following simple
bound on cosh z.

Claim 3.3. For all \, we have



We prove this claim below and now proceed with the proof of Hoeffding’s
inequality. By Claim 3.3:

E[exp ()\XZ-)} < /2,
Thus, by Lemma 3.2,
[Le™?  senmn
Pr{ZXizt}gT:e /22,
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For A\ = t/n, we get the desired bound. To finish the proof we need to
establish Claim 3.3.

Proof of Claim 8.3. Write the Taylor series for functions cosh A and N2,
eA+e*A_1+A2+ +A2i+
2 2! (20)
2 2i
A2 _q ML
e +2+ +2i-i!+”'

Observe that (24)! > 2¢-il. Thus, the i-th term in the first series is less than
or equal to the i-th term in the second series for each i. Therefore, we have
cosh A < M2, O

O]

Corollary 3.4 (Symmetric Hoeffding’s Inequality). Let X1,..., X, be i.i.d.
symmetric Bernoulli random wvariables taking values 1 and —1 with proba-
bility 1/2 i.e.,

Pr{X; =1} =Pr{X;, = -1} = 1/a.

Then, for all t > 0, we have
Pr {‘ 3 x;

Proof. The random variable S = ). X; is symmetric around 0, and conse-
quently for every ¢t we have Pr{S >t} = Pr{S < —t}. Thus,

+2
> t} < 2e" .

2

Pr{ZXig—t} :Pr{ZXiZt} < e 5.
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Thus,

Pr{’zi:Xi

+2

Zt}:Pr{ZXig—t}—i-Pr{ZXiZt} < 2 .

O

We now state a more general variant of Hoeffding’s Inequality (without
a proof).

Theorem 3.5 (Hoeffding’s Inequality). Let X1, ..., X,, be independent ran-
dom wvariables. Suppose that each X; takes values in the interval [m;, M;].
Let p = E[Z:z Xi]. Then, for all t > 0, we have

_ 2t2
Pr{‘ > Xi— M‘ > t} < % S0-m)? |
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4 Chernoff Bound

Theorem 4.1 (The Chernoff Bound). Consider independent random vari-
ables X1,..., Xy taking values in the interval [0,1]. Let p; = E[X;] and

=1 ti. Then,

n

t

Pr{ZXi > t} < e_“<%) .
=1

Proof. Fix a positive A. As in the proof of Hoeffding’s inequality, we first
upper bound E[e)‘Xi] for each i. Since x — e is a convex function, the
following inequality holds for all x € [0, 1]:

A <zt (1—2)e =xed + (1 —2) =1+ 2(e —1).
Thus,
E[e’\Xi} < E[l + X;(e — 1)} =14 pied—1) < et 1),
By Lemma 3.2,

L E[e/\Xi} [T, exp(pi(e* — 1))
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For A =In(t/u), we get
{ﬁlf—i}ﬁe (7) =(7)
0

It is easy to use this form of the Chernoff bound in this form when ¢ > pu.
We now derive a simpler — but less precise — upper bound for ¢t = (1 4 J)p,
0 > 0. The right hand side of the inequality equals

e\t _ e el @
P = (atm) = ()

We estimate the term in the brackets, e? /(1 4 §)'°, as follows:

8
wroye <
_52
e?+5 (prove this bound!) and get the following version of the Chernoff

Bound.

Corollary 4.2 (The Chernoff bound). Consider independent random vari-
ables X1,..., X, taking values {0,1}. Let p; = BE[X;] and p = >0 .
Then,

—5%u

Pr{;Xi > (1+5)u} < ez,

Moreover for ¢ € [0,1], we have

Pr { En:Xi > (1+ (5)/1} < 6_52“/3;
i=1

Pr { ZH:XZ < (1 — 5)#} < 6752H/3;
=1



