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1 Basic Inequalities

Theorem 1.1 (Markov’s Inequality). Consider a non-negative random vari-
able X. For every positive t, we have

Pr{X ≥ t} ≤ E[X]

t
.

Theorem 1.2 (Chebyshev’s Inequality). Consider an arbitrary random
variable X with a finite expectation µ = E[X] and finite variance Var[X] =
E[(X − µ)2]. For every positive t, we have

Pr{|X − µ| ≥ t} ≤ Var[X]

t2
.

Exercise: Prove Markov’s and Chebyshev’s inequalities.

Theorem 1.3 (Jensen’s Inequality). For every convex function f : R→ R
and random variable X, we have

E[f(X)] ≥ f(E[X]).

For every concave function g : R→ R and random variable X, we have

E[g(X)] ≤ g(E[X]).

Theorem 1.4 (The Cauchy–Schwarz Inequality). For all random variables
X and Y , the following inequality holds:

E[XY ] ≤
√
E[X2] E[Y 2].
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2 Bounds on Binomial Coefficients

Claim 2.1. For all natural n and k ≤ n, we have(n
k

)k
≤
(
n

k

)
<
(en
k

)k
.

Proof. We first show the lower bound. Write(
n

k

)
=

n!

k! (n− k)!
=
n · (n− 1) · · · (n− k + 1)

k · (k − 1) · · · 1
=

k−1∏
i=0

n− i
k − i

.

Observe that all terms (n− i)/(k − i) are lower bounded by n/k. Thus,(
n

k

)
=

k−1∏
i=0

n− i
k − i

≥
(n
k

)k
.

Now we establish the upper bound. We have(
n

k

)
=

n!

k! (n− k)!
=
n · (n− 1) · · · (n− k + 1)

k!
≤ nk

k!
.

To finish the proof, we need to show that k! > (k/e)k (compare this in-
equality with Stirling’s approximation for k!). Write the Taylor series for
ek:

ek = 1 + k +
k2

2!
+ · · ·+ kk

k!
+ · · · > kk

k!
.

We have ek > kk/k! and, consequently, k! > (k/e)k.

3 Hoeffding’s Inequality

Theorem 3.1 (Hoeffding’s Inequality). Let X1, . . . , Xn be i.i.d.1 Rademacher
random variables taking values 1 and −1 with probability 1/2 i.e.,

Pr{Xi = 1} = Pr{Xi = −1} = 1/2.

Then, for all t ≥ 0, we have

Pr
{∑

i

Xi ≥ t
}
≤ e−

t2

2n .

1i.i.d. stands for independent identically distributed
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Proof. We first show the following lemma.

Lemma 3.2 (Bernstein). Let X1, . . . , Xn be independent random variables.
For all λ > 0 and t ≥ 0, we have

Pr
{∑

i

Xi ≥ t
}
≤
∏
iE
[
eλXi

]
eλt

.

Proof of Lemma 3.2. Let f(x) = eλx and S =
∑

iXi. Observe that f is
a monotonically increasing non-negative function. Thus, x ≥ t if and only
if f(x) ≥ f(t). In particular, S ≥ t if and only if f(S) ≥ f(t). Thus, by
Markov’s inequality applied to the random variable f(S), we have

Pr{S ≥ t} = Pr{f(S) ≥ f(t)} ≤ E[f(S)]

f(t)
.

Write,

E[f(S)] = E
[

exp
(
λ
∑
i

Xi

)]
= E

[∏
i

exp
(
λXi

)]
.

Random variables exp
(
λXi

)
(i ∈ {1, . . . , n}) are independent, hence

E
[∏

i

exp
(
λXi

)]
=
∏
i

E
[

exp
(
λXi

)]
.

Thus,

Pr{S ≥ t} ≤

∏
iE
[

exp
(
λXi

)]
f(t)

.

This concludes the proof.

We now use Lemma 3.2 to prove Hoeffding’s inequality. To this end, we
compute the expectation E[exp(λXi)] for each i:

E
[

exp
(
λXi

)]
= Pr{Xi = 1} · eλ + Pr{Xi = −1} · e−λ =

eλ + e−λ

2
.

The function on the right hand side is called the hyperbolic cosine and
denoted by coshx: coshx = (eλ + e−λ)/2. We use the following simple
bound on coshx.

Claim 3.3. For all λ, we have

eλ + e−λ

2
≤ eλ2/2
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We prove this claim below and now proceed with the proof of Hoeffding’s
inequality. By Claim 3.3:

E
[

exp
(
λXi

)]
≤ eλ2/2.

Thus, by Lemma 3.2,

Pr
{∑

i

Xi ≥ t
}
≤
∏
i e

−λ2/2

eλt
= eλ

2n/2−λt.

For λ = t/n, we get the desired bound. To finish the proof we need to
establish Claim 3.3.

Proof of Claim 3.3. Write the Taylor series for functions coshλ and eλ
2/2:

eλ + e−λ

2
= 1 +

λ2

2!
+ · · ·+ λ2i

(2i)!
+ . . .

eλ
2/2 = 1 +

λ2

2
+ · · ·+ λ2i

2i · i!
+ . . .

Observe that (2i)! ≥ 2i · i!. Thus, the i-th term in the first series is less than
or equal to the i-th term in the second series for each i. Therefore, we have
coshλ ≤ eλ2/2.

Corollary 3.4 (Symmetric Hoeffding’s Inequality). Let X1, . . . , Xn be i.i.d.
symmetric Bernoulli random variables taking values 1 and −1 with proba-
bility 1/2 i.e.,

Pr{Xi = 1} = Pr{Xi = −1} = 1/2.

Then, for all t ≥ 0, we have

Pr
{∣∣∣∑

i

Xi

∣∣∣ ≥ t} ≤ 2e−
t2

2n .

Proof. The random variable S =
∑

iXi is symmetric around 0, and conse-
quently for every t we have Pr{S ≥ t} = Pr{S ≤ −t}. Thus,

Pr
{∑

i

Xi ≤ −t
}

= Pr
{∑

i

Xi ≥ t
}
≤ e−

t2

2n .

4



Thus,

Pr
{∣∣∣∑

i

Xi

∣∣∣ ≥ t} = Pr
{∑

i

Xi ≤ −t
}

+ Pr
{∑

i

Xi ≥ t
}
≤ 2e−

t2

2n .

We now state a more general variant of Hoeffding’s Inequality (without
a proof).

Theorem 3.5 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent ran-
dom variables. Suppose that each Xi takes values in the interval [mi,Mi].
Let µ = E

[∑
iXi

]
. Then, for all t ≥ 0, we have

Pr
{∣∣∣∑

i

Xi − µ
∣∣∣ ≥ t} ≤ 2e

− 2t2∑
(Mi−mi)2 .

4 Chernoff Bound

Theorem 4.1 (The Chernoff Bound). Consider independent random vari-
ables X1, . . . , Xn taking values in the interval [0, 1]. Let µi = E[Xi] and
µ =

∑n
i=1 µi. Then,

Pr
{ n∑
i=1

Xi ≥ t
}
≤ e−µ

(eµ
t

)t
.

Proof. Fix a positive λ. As in the proof of Hoeffding’s inequality, we first
upper bound E

[
eλXi

]
for each i. Since x 7→ eλx is a convex function, the

following inequality holds for all x ∈ [0, 1]:

eλx ≤ xeλ + (1− x)e0 = xeλ + (1− x) = 1 + x(eλ − 1).

Thus,

E
[
eλXi

]
≤ E

[
1 +Xi(e

λ − 1)
]

= 1 + µi(e
λ − 1) ≤ eµi(eλ−1).

By Lemma 3.2,

Pr
{ n∑
i=1

Xi ≥ t
}
≤
∏
iE
[
eλXi

]
eλt

≤
∏
i exp(µi(e

λ − 1))

eλt

=
exp

(∑
i µi(e

λ − 1)
)

eλt
=
eµ(e

λ−1)

eλt
.
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For λ = ln(t/µ), we get

Pr
{ n∑
i=1

Xi ≥ t
}
≤ et−µ

(µ
t

)t
= e−µ

(eµ
t

)t
.

It is easy to use this form of the Chernoff bound in this form when t� µ.
We now derive a simpler – but less precise – upper bound for t = (1 + δ)µ,
δ > 0. The right hand side of the inequality equals

e−µ
(eµ
t

)t
= e−µ

( e

(1 + δ)

)(1+δ)µ
=
( eδ

(1 + δ)1+δ

)µ
.

We estimate the term in the brackets, eδ/(1 + δ)1+δ, as follows: eδ

(1+δ)1+δ
≤

e
−δ2
2+δ (prove this bound!) and get the following version of the Chernoff

Bound.

Corollary 4.2 (The Chernoff bound). Consider independent random vari-
ables X1, . . . , Xn taking values {0, 1}. Let µi = E[Xi] and µ =

∑n
i=1 µi.

Then,

Pr
{ n∑
i=1

Xi ≥ (1 + δ)µ
}
≤ e

−δ2µ
2+δ .

Moreover for δ ∈ [0, 1], we have

Pr
{ n∑
i=1

Xi ≥ (1 + δ)µ
}
≤ e−δ2µ/3;

Pr
{ n∑
i=1

Xi ≤ (1− δ)µ
}
≤ e−δ2µ/3;
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